Gröbner Bases for Operads

نویسنده

  • VLADIMIR DOTSENKO
چکیده

We define a new monoidal category on collections (shuffle composition). Monoids in this category (shuffle operads) turn out to bring a new insight in the theory of symmetric operads. For this category, we develop the machinery of Gröbner bases for operads, and present operadic versions of Bergman’s Diamond Lemma and Buchberger’s algorithm. This machinery can be applied to study symmetric operads. In particular, we obtain an effective algorithmic version of Hoffbeck’s PBW criterion of Koszulness for (symmetric) quadratic operads.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Freeness Theorems for Operads via Gröbner Bases

We show how to use Gröbner bases for operads to prove various freeness theorems: freeness of certain operads as nonsymmetric operads, freeness of an operad Q as a P-module for an inclusion P ֒→ Q, freeness of a suboperad. This gives new proofs of many known results of this type and helps to prove some new results.

متن کامل

Implementing Gröbner bases for operads

We present an implementation of the algorithm for computing Gröbner bases for operads due to the first author and A. Khoroshkin. We discuss the actual algorithms, as well as the choices made for the implementation platform and the data representation. We indicate strengths and weaknesses of our approach, and discuss possible directions for expanding the current work.

متن کامل

MATH536A Paper: Gröbner Bases

An introduction to Gröbner bases and some of their uses in affine algebraic geometry.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009